DEEP NEURAL NETWORK FOR DETECTION DOS/DDOS ATTACKS

Рік публікації: 
2017
Збірник №: 
3
Нумерація сторінок: 
7-13
Аннотація: 
In this paper the approach for detection of DoS/DDoS attacks is described. The approach is based on deep neural network. The main goal of proposed approach is to detect unknown, previous unseen cyber attacks. The proposed approach can increase the reliability of detection cyber attacks in computer systems and, as a result, it may reduce financial losses of companies
Повний текст статті: 
Файл статті: 
Література: 
1. ESET, https://www.eset.com 2. Ukraine has covered a hacker attack - "lying" sites of banks and enterprises, https://mind.ua/news/20173611-ukrayinu-nakrila-hakerska-ataka-lezhat-sajti-bankiv-i-pidpriemstv (In Ukrainian) 3. Petya did not regret anyone. Consequences of the supermarket virus, https://ua.korrespondent.net/ukraine/3865867-Petya-nikoho-ne-poshkoduvav-naslidky-supervirusu (In Ukrainian) 4. Lossesofbanksfromcybercrime, http://www.tadviser.ru/index.php/Статья:Потери_банков_от_киберпреступности (In Russian) 5. Center for monitoring and responding to computer attacks in the credit and financial sphere, http://www.tadviser.ru/index.php/Компания:Центр_мониторинга_и_реагирования_на_компьютерные_атаки_в_кредитно-финансовой_сфере_(FinCERT,_ФинСЕРТ) (In Russian) 6. How to protect against DDos attacks and other cyberthreats?, https://cosmonova.net/page/DDos-attack (In Russian) 7. Krizhevsky A at al. ImageNet classification with deep convolutional neural networks // In Proc. Advances in Neural information Processing Systems. - 2012. – 25. – P. 1090–1098. 8. Hinton G. at al. Deep neural network for acoustic modeling in speech recognition / G. Hinton // IEEE Signal Processing Magazine. – 2012. – № 29. - P. 82–97. 9. Li Deng and Dong Yu. Deep Learning: Methods and Applications. Foundations and Trends in Signal Processing, Vol. 7, N. 3-4, pp. 197–387, 2014. 10. J. Schmidhuber. Deep learning in neural networks: An overview // Neural Networks, Vol. 61, N. 1, pp. 85–117, January 2015. 11. A. Fischer and C. Igel. Training Restricted Boltzmann Machines: An Introduction. Pattern Recognition, Vol. 47, N. 1, pp. 25–39, January 2014. 12. Y. Bengio at al. Representation Learning: A Review and New Perspectives // IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 35, N. 8, pp. 1798–1828, August 2013. 13. LeCun, Y., Bengio, Y., Hinton, G. Deep learning // Nature. – 2015. - 521 (7553). – Р. 436– 444. 14. Golovko V., Kroshchanka A., Rubanau U., Jankowski S. Learning Technique for Deep Belief Neural Networks // in book Neural Networks and Artificial Intelligence. – Springer, 2014. – Vol. 440. Communication in Computer and Information Science. – P. 136-146. 15. KDD Cup 1999 Data, 1999. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.